

Department of Computer Science Southern Illinois University Carbondale

CS 491/531 SECURITY IN CYBER-PHYSICAL SYSTEMS

Lecture 13: Risk and Vulnerability in ICS

DR. ABDULLAH AYDEGER

LOCATION: ENGINEERING A 409F

EMAIL: AYDEGER@CS.SIU.EDU

Outline

Risks

Security Tests

System Characterization

Recall: Lessons learned from Stuxnet

Previous Belief	Lesson Learned
Control systems can be isolated from other networks, eliminate risk of cyber incident	They are still subject to human who can use USB
PLC and RTUs don't run modern OS, don't have necessary attack surface	PLCs can be affected and have been affected by malware
Firewall/IDS are sufficient	Blacklisting based defense is not sufficient due to zero- day vulnerabilities, whitelist defenses should be considered against unknown exploits

Recall: How to proceed if infection detected

Not to clean it directly

- May have subsequent levels of infection that exist (staying idle and undetected)
- Valuable info such as infection path, other compromised hosts

First step to isolate the infected host

Collect as much as possible forensics data

• System logs, network traffic, memory analysis data

Statistics of ICS Incidents

80% impacting ICS are "unintentional"

- Only 35% from outsider
- Insider + unintentional is a big concern

Embedded devices and network appliances were targeted 34%

• Windows-based ICS and enterprise hosts 66%

These numbers would help to understand risks that should be prioritized

https://scadahacker.com/

What is Risk?

ISO defines: "potential that a given threat will exploit vulnerabilities of asset"

Risk is a function of:

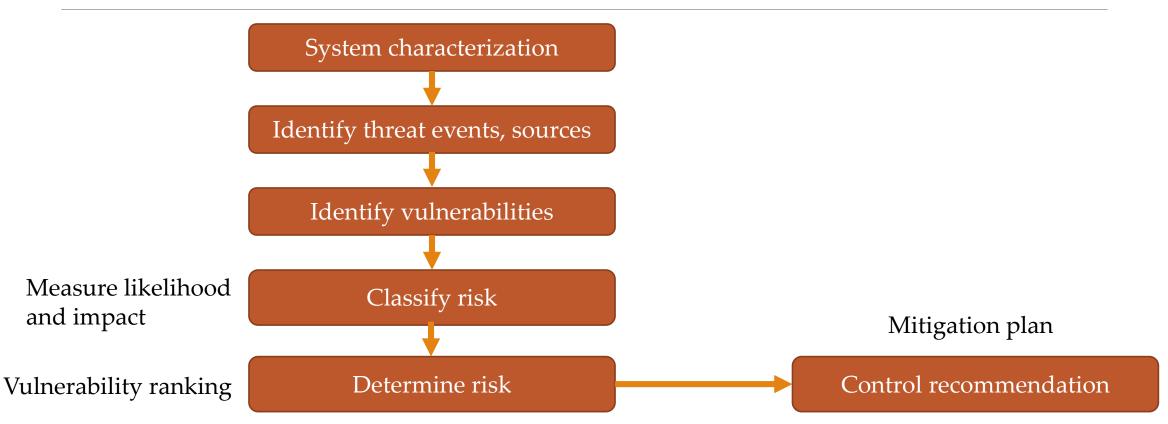
- The likelihood of a given "Threat Event"
- Exercising particular potential vulnerability of an asset
- Consequences that impact operation of the asset

Threat Event:

- Threat source and actor to carry out the event
- Threat vector to initiate the event
- Threat target which the event attacks

Risk Cont'd

Threat source and actor refer to human aspect of attack:


- Capability to carry out the attack
- Intent to cause harm
- Opportunity to initiate the event

Insider has extensive Capability and Opportunity

 Thus, very likely to be target in early phases of blended attack due to being harder to detect and mitigate

Flowchart of Assessing Risks to ICS

Security Tests

Benefit = number of vulnerabilities identified

Any assessment is a snapshot in time

- Vulnerabilities are discovered, disclosed, and patched within short time (daily, weekly)
- Requires <u>repetitive process</u>

Repetition can be triggered in:

- Changes to system such as component upgrade
- Changes in threats such as new exploit

Objective of Security Testing

Identification of system vulnerabilities

Detection of security controls employed

• And their effectiveness

https://tools.kali.org/stress-testing/termineter

https://github.com/inguardians/optiguard

Security Testing in ICS

Penetration testing in ICS?

• Requires non-production test environment

Security Audits

- Test particular system against <u>specific set of policies</u>, procedures or regulations
 - It usually mean known threats
 - Do not uncover unexpected or latest vulnerabilities

Security and Vulnerability Assessment

- To look at the <u>entire solution for the system</u>
 - This means each ICS system and subsystem/network infrastructure and so on

Theoretical Tests

Industrial systems operational integrity is critical to allow test to be run, even small risk tests can disrupt the integrity (time requirements, etc.)

• Leads to theoretical tests

Standardized method of completing <u>questionnaire</u>

• Like interview

Dept of Homeland Sec (DHS) ICS Cyber Emergency Response Team (ICS-CERT) developed Cyber Security Evaluation tool (<u>CSET</u>) for offline tests

- Security practices are compared against recognized industry standards
- Answers generate output with the recommendation list

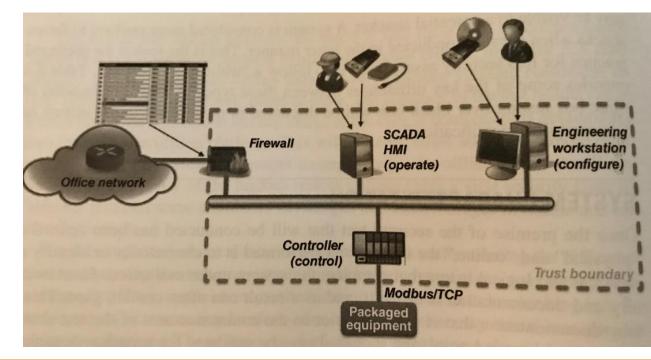
Online – Offline Physical Tests

Online test:

- Evaluation is performed on actual running industrial network
 - Contains volatile ICS components
- Represents completely functional and operational ICS architecture
 - Including 3rd party components

Offline test:

- Not connected to physical process and not performing real-time control operations
 - Difficult to include 3rd party
- Reflects subset of overall architecture, can omit key components



System Characterization

<u>First activity</u> to perform for physical and online test

Use zone concept for better analysis

- Create trust boundary
- All external entry points require penetration

Identifying Entry Points

Entry Point	Description	Data Flows associated	Assets associated
Firewall	Internal firewall between office and control network	Authentication File Sharing	Engineering Workstation (EWS)
Modbus port on Controller		Modbus/tcp	Controller
USB Port	On EWS	Software, Data files	EWS
Wireless	WLAN/Bluetooth on EWS	Software, Data files	EWS

Identifying Logical Assets

Physical Asset	Logical Asset	Threat Event
Firewall	Firmware Management Port/Config ID & Authentication Services Log Files Communication interfaces	Modify firmware to change behavior Modify configuration Elevation of privilege Modify Logs to remove audit DoS
Network	Switch Ports Switch config	Malicious connection Modify behavior
Controller	Modbus/Ethernet interface	Send elicit instructions (malware), DoS
EWS	Windows Stored files Configuration Ethernet interface/modem Keyboard/CD/USB	Elevation of privilege Copy/modify/delete information Modify config, send command to controller Gain Remote access, inject malware Modify anything, inject malware

Scanning Industrial Networks

Device Scanners

Vulnerability Scanners

Traffic Scanner

Device Scanners

Ping command:

- Basic device identification tool, built-in to most commercial OS
- <u>Not effective in ICS</u> due to security appliances rarely forward ping (ICMP)

Arping and arp-scan:

• Based on ARP protocol (MAC layer) can be used to identify hosts

Network mapper or *nmap*:

- Data collection via network-based, external packet injection and analysis
- Host discovery, host service detection, OS detection, spoofing, execute customized code

Device Scanners

Network statistics or netstat tool

- Command-line feature is available on most OS
- Useful when trying to identify applications and services running on particular host
- Does not inject packets on network which could compromise time-sensitive communication between ICS
- Friendly and passive

dress State LISTEN
LISIEN
48:59476 ESTABLISHED
LISTEN
LISTEN

Vulnerability Scanners

OpenVAS open-source, and many commercial tools (Tenable Nessus, SAINT scanner)

Identify vulnerabilities that may exists comparing with database of known vulnerabilities

• Depends on product's database, different results

https://tools.kali.org/vulnerability-analysis/openvas

Traffic Scanners

Collect raw network packets and provide them for host identification, firewall rule set, etc.

Basic form is tcpdump for Linux, windump for Windows

• Purpose is to capture and save network traffic

Wireshark

- Uses pcap (file style of tcpdump)
- Used for analysis of network traffic
- Not recommended to use for raw packet collection
 - Memory performance issues

Wireshark INP Dissectors

CIP

EtherCAT

Ethernet POWERLINK

GOOSE

Modbus

OPC UA

PROFINET

SERCOS

Examples of Live Host Identification

Quiet Scanning Techniques:

• Single ARP request via arping

• Scan entire subnet via arp-scan (-l)

root@debian:~# arping -c 2 192.168.178.27 ARPING 192.168.178.27 60 bytes from 08:00:27:c9:7c:85 (192.168.178.27): index=0 time=396.617 usec 60 bytes from 08:00:27:c9:7c:85 (192.168.178.27): index=1 time=313.585 usec --- 192.168.178.27 statistics ---2 packets transmitted, 2 packets received, 0% unanswered (0 extra) rtt min/avg/max/std-dev = 0.314/0.355/0.397/0.042 ms root@debian:~#

	rp-scaninterface=eth				
Interface: eth0, datalink type: EN10MB (Ethernet)					
starting arp-s	can 1.9 with 256 hosts	<pre>(http://www.nta-monitor.com/tools/arp-scan/)</pre>			
72.16.44.1	00:50:56:c0:00:08	VMware, Inc.			
72.16.44.2	00:50:56:fa:49:a4	VMware, Inc.			
72.16.44.140	00:0c:29:2d:9c:10	VMware, Inc.			
72.16.44.141	00:0c:29:0a:56:4f	VMware, Inc.			
72.16.44.145	00:0c:29:5f:1d:1f	VMware, Inc.			
72.16.44.148	00:0c:29:0f:46:91	VMware, Inc.			
72.16.44.149	00:0c:29:df:37:17	VMware, Inc.			
72.16.44.153	00:0c:29:ec:fd:52	VMware, Inc.			
72.16.44.254	00:50:56:fe:c9:1a	VMware, Inc.			
72.16.44.254	00:50:56:fe:c9:1a	VMware, Inc.			

oot@kali:~#

Examples of Live Host Identification

• Packet capture without attempting to resolve addresses to hostname via tcpdump

TCPDUMP(8) System Manager's Manual NAME tcpdump - dump traffic on a network SYNOPSIS tcpdump [-AbdDefhHIJKlLnNOpqRStuUvxX#] [-B buffer size]	
tcpdump - dump traffic on a network SYNOPSIS	TCPDUMP(8)
SYNOPSIS	
tendumn [_AbdDefbHT1K11nNOngRStullyxX#] [_B buffer size]	
<pre>[-c count] [-C file size] [-G rotate seconds] [-F file] [-i interface] [-j tstamp type] [-m module] [-M secret] [-number] [-Q injout]inout] [-r file] [-V file] [-s snaplen] [-T type] [-w file] [-W filecount] [-E spi@ipaddr algo:secret,] [-y datalinktype] [-z postrotate-command] [-Z user] [-time-stamp-precision=tstamp precision] [-immediate-mode] [version] [expression]</pre>	

DESCRIPTION

<u>Tcpdump</u> prints out a description of the contents of packets on a network interface that match the boolean <u>expression</u>; the description is preceded by a time stamp, printed, by default, as hours, minutes, seconds, and fractions of a second since midnight. It can also be run with the -w flag, which causes it to save the packet data to a file for later analysis, and/or with the -r flag, which causes it to read from a saved packet file rather than to read packets from a network interface (please note <u>tcpdump</u> is protected via an enforcing **apparmor**(7) profile in Ubuntu which limits the files <u>tcpdump</u> may access). It can also be run with the -V flag, which causes it to read a list of saved packet files. In all cases, only packets that match <u>expression</u> will be processed by tcpdump.

Examples of Live Host Identification

Noisy/Dangerous Scanning Techniques:

• Ping sweep on a single subnet via nmap:

root@Qhacker:~# nmap -sn 192.168.56.0/24

Starting Nmap 6.46 (http://nmap.org) at 2014-06-19 07:38 IST Nmap scan report for 192.168.56.100 Host is up (0.00058s latency). MAC Address: 08:00:27:7A:CC:DB (Cadmus Computer Systems) Nmap scan report for 192.168.56.103 Host is up (0.0017s latency). MAC Address: 08:00:27:FC:15:EA (Cadmus Computer Systems) Nmap scan report for 192.168.56.110 Host is up (0.00023s latency). MAC Address: 08:00:27:00:24:06 (Cadmus Computer Systems) Nmap scan report for 192.168.56.115 Host is up (0.011s latency). MAC Address: 08:00:27:A0:16:85 (Cadmus Computer Systems) Nmap scan report for 192.168.56.113 Host is up. Nmap done: 256 IP addresses (5 hosts up) scanned in 28.97 seconds root@Qhacker:~#

• Create and send specific packets on network via hping3

		root@ddos: ~	•	•	×
File	Edit View Sea	rch Terminal Help			
root@	ddos:~# hping	j3 -h			•
usage	: hping3 host	[options]			
- h		show this help			
- V	version	show version			
		packet count			
-i	fast	wait (uX for X microseconds, for example -i u1000) alias for -i u10000 (10 packets for second) alias for -i u1000 (100 packets for second)			
		sent packets as fast as possible. Don't show replies.			
- n		numeric output			
- q	quiet	quiet			
- I		interface name (otherwise default routing interface)			
- V		verbose mode			
- D	debug	debugging info			
- Z	bind	bind ctrl+z to ttl (default to dst port)			
- Z	unbind	unbind ctrl+z			
	beep	beep for every matching packet received			
Mode					
def	ault mode	ТСР			
	rawip	RAW IP mode			
- 1	icmp	ICMP mode			
- 2	udp				
- 8	scan	SCAN mode.			
		Example: hpingscan 1-30,70-90 -S www.target.host			-

Suggested ICS Actions

Instead of ping sweep:

- Perform physical verification
- Conduct passive network listening
- Scan subset of targets

Instead of port scan:

- Do local verification (netstat)
- Scan duplicate or test system on non-production network

Instead of vulnerability scan:

• Non-production network

Command Line Tools

No packet injection

To display network configuration values, *ipconfig* can be used

C:\Users\SIUipconfig	
Windows IP Configuration	
Ethernet adapter Ethernet:	
Connection-specific DNS Suffix .	. :
Link-local IPv6 Address	: fe80::8cb2:9d7d:c0bd:
IPv4 Address	: 131.230.166.
Subnet Mask	: 255.255.255.192
Default Gateway	: 131.230.166.254

Command Line Tools

To determine what apps running and how they map to communication ports via netstat

	C:\Users	\sarav>netstat		
	Activo C	onnections		
	ACCIVE C	onnections		
1	Proto	Local Address	Foreign Address	State
	TCP	10.211.55.3:52992	40.90.189.152:https	ESTABLISHED
	TCP	10.211.55.3:53030	13.107.42.254:https	TIME_WAIT
	ТСР	10.211.55.3:53031	13.107.18.254:https	TIME_WAIT
)	ТСР	10.211.55.3:53032	131.253.33.254:https	TIME_WAIT
	ТСР	10.211.55.3:53033	204.79.197.222:https	ESTABLISHED
	ТСР	10.211.55.3:53034	a-0001:https	ESTABLISHED
	TCP	10.211.55.3:53035	13.107.18.11:https	ESTABLISHED
1	TCP	10.211.55.3:53036	13.107.246.254:https	ESTABLISHED
	TCP	10.211.55.3:53037	117.18.232.200:https	ESTABLISHED
ĺ	TCP	10.211.55.3:53040	13.107.246.10:https	ESTABLISHED
a	TCP	10.211.55.3:53041	ec2-54-167-36-150:ms-w	bt-server ESTABLISHED
	TCP	127.0.0.1:7778	mylocalserver:51929	ESTABLISHED
1	TCP	127.0.0.1:49681	mylocalserver:49682	ESTABLISHED
	TCP	127.0.0.1:49682	mylocalserver:49681	ESTABLISHED
	TCP	127.0.0.1:51927	mylocalserver:51928	ESTABLISHED
	TCP	127.0.0.1:51928	mylocalserver:51927	ESTABLISHED
	TCP	127.0.0.1:51929	mylocalserver:7778	ESTABLISHED
3	TCP	127.0.0.1:51930	mylocalserver:51931	ESTABLISHED
	TCP	127.0.0.1:51931	mylocalserver:51930	ESTABLISHED
-	TCP	127.0.0.1:51932	mylocalserver:51933	ESTABLISHED
-	TCP	127.0.0.1:51933	mylocalserver:51932	ESTABLISHED
1				

Command Line Tools

A few other examples:

- To provide list of running applications and services with their associated PID via "tasklist"
- To see hardware and software inventory (configs), "systeminfo"
- Window Management Instrumentation Command-line (wmic) provides set of system management features

Steps to be taken for System Characterization

Use arp-scan to <u>identify network-connected hosts</u>

Confirm <u>identified hosts are authorized</u> for the network. If not, physically inspect and take actions. Update system architecture with newly discovered info

Collect host info for each connected device, including hardware and OS info

• Can be obtained via systeminfo

Collect <u>app info</u> for each device including vendor, name, patches, etc.

• Can be obtained via wmic

Consolidate this info into database with appropriate classified policies

Data Flow Analysis

Wireshark

Example

			୬ 🕾 🕅 🖢 📃 🗏 🔍 ସ୍ ସ୍ 🖽		Press Here			
ip.s	c == 192.168.1.19	9	Display Filter for Sour	1			Expre	ssion
0.	Time	source	Destination	Protocol	Info		V	
-		192.168.1.199	78.52.2ca9.ip4.static.sl-reve					
		192.168.1.199	bom07s18-in-f14.1e100.net	TCP	64106 → https(443) [ACK] Seq=1 Ack=1 Win=258 Len=1 [TCl	segment of	t a reassemb	led .
-		192.168.1.199	78.52.2ca9.ip4.static.sl-reve		63938 → https(443) [ACK] Seq=39 Ack=46 Win=254 Len=0			
		192.168.1.199	192.168.1.1	DNS	Standard query 0x2e37 PTR 199.1.168.192.in-addr.arpa			
		192.168.1.199	192.168.1.1	DNS	Standard query 0xbd74 PTR 120.82.44.169.in-addr.arpa		-	
		192.168.1.199	bom07s18-in-f14.1e100.net	TCP	64101 → https(443) [ACK] Seq=1 Ack=1 Win=255 Len=1 [TCl			
		192.168.1.199	bom05s12-in-f14.1e100.net	TCP	64104 → https(443) [ACK] Seq=1 Ack=1 Win=254 Len=1 [TCl			
		192.168.1.199	bom05s12-in-f14.1e100.net	TCP	64105 → https(443) [ACK] Seq=1 Ack=1 Win=258 Len=1 [TCH	P segment of	f a reassemb	led
		192.168.1.199	192.168.1.1	DNS	Standard query 0x9edd PTR 46.166.217.172.in-addr.arpa			
		192.168.1.199	192.168.1.1	DNS	Standard query 0x7eab PTR 1.1.168.192.in-addr.arpa			
		192.168.1.199	192.168.1.1	DNS	Standard query 0x9f65 PTR 174.160.217.172.in-addr.arpa	-Now you	u see sour	се
		192.168.1.199	cache.google.com	TLSv1.2	Application Data	column	contains	
		192.168.1.199	cache.google.com	TCP	64110 → https(443) [ACK] Seq=1228 Ack=3473 Win=259 Len		ckets who	68
		192.168.1.199	cache.google.com	TCP	64110 → https(443) [ACK] Seq=1228 Ack=6945 Win=259 Len		ID addrass	. ie
		192.168.1.199	cache.google.com	ТСР	64110 → https(443) [ACK] Seq=1228 Ack=9885 Win=259 Len			15
		192.168.1.199	cache.google.com	TCP	64110 → https(443) [ACK] Seq=1228 Ack=12709 Win=259 Let		5.1.199	
		192.168.1.199	cache.google.com	TCP	64110 → https(443) [ACK] Seq=1228 Ack=14121 Win=259 Let			
		192.168.1.199	cache.google.com	TCP	64110 → https(443) [ACK] Seq=1228 Ack=16945 Win=259 Le			
		192.168.1.199	cache.google.com	ТСР	64110 → https(443) [ACK] Seq=1228 Ack=20833 Win=259 Le			
		192.168.1.199	cache.google.com	ТСР	64110 → https(443) [ACK] Seq=1228 Ack=22593 Win=259 Let			
		192.168.1.199	cache.google.com	TCP	64110 → https(443) [ACK] Seq=1228 Ack=25417 Win=259 Le			
	52 0.000084	192.168.1.199	cache.google.com	TCP	64110 → https(443) [ACK] Seq=1228 Ack=28241 Win=259 Le	n=0		
Fr	ame 1: 92 by	tes on wire (73	36 bits), 92 bytes captured (736 b	its) on i	interface 0 000		56 14 c0 8	
Et	hernet II, S	rc: 86:1d:de:0a	a:fb:b6 (86:1d:de:0a:fb:b6), Dst:	BestItWo_			1d 40 00 8	
In	ternet Proto	col Version 4,	Src: 192.168.1.199 (192.168.1.199), Dst: 7	78.52.2ca9.ip4.static.sl-reverse.com (169.44.82.120 002		c2 01 bb 4	
Tr	ansmission C	ontrol Protocol	l, Src Port: 63938 (63938), Dst Po	ort: https	s (443), Seq: 1, Ack: 1, Len: 38		1c 00 00 1	
Se	cure Sockets	Layer			004		8f 29 32 e 0d 20 fd 5	
						23 40 00	20 10 3	
					> <			

ABDULLAH AYDEGER - CS 531 - SECURITY IN CYBER-PHYSICAL SYSTEMS

Identification of Threats during Security Assessment

Threats could be revealed in following cases (not limited to):

- Infected media discovered from antivirus log
- Corrupted data discovered from local disk evaluation
- Data stolen discovered from network resource usage

Useful info to be used for action plan and mitigation controls